skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hauser, Emma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Increased plant growth under elevated carbon dioxide (CO2) slows the pace of climate warming and underlies projections of terrestrial carbon (C) and climate dynamics. However, this important ecosystem service may be diminished by concurrent changes to vegetation carbon‐to‐nitrogen (C:N) ratios. Despite clear observational evidence of increasing foliar C:N under elevated CO2, our understanding of potential ecological consequences of foliar stoichiometric flexibility is incomplete. Here, we illustrate that when we incorporated CO2‐driven increases in foliar stoichiometry into the Community Land Model the projected land C sink decreased two‐fold by the end of the century compared to simulations with fixed foliar chemistry. Further, CO2‐driven increases in foliar C:N profoundly altered Earth's hydrologic cycle, reducing evapotranspiration and increasing runoff, and reduced belowground N cycling rates. These findings underscore the urgency of further research to examine both the direct and indirect effects of changing foliar stoichiometry on soil N cycling and plant productivity. 
    more » « less
  2. Abstract Rooting depth is an ecosystem trait that determines the extent of soil development and carbon (C) and water cycling. Recent hypotheses propose that human‐induced changes to Earth's biogeochemical cycles propagate deeply into Earth's subsurface due to rooting depth changes from agricultural and climate‐induced land cover changes. Yet, the lack of a global‐scale quantification of rooting depth responses to human activity limits knowledge of hydrosphere‐atmosphere‐lithosphere feedbacks in the Anthropocene. Here we use land cover data sets to demonstrate that root depth distributions are changing globally as a consequence of agricultural expansion truncating depths above which 99% of root biomass occurs (D99) by ∼60 cm, and woody encroachment linked to anthropogenic climate change extending D99 in other regions by ∼38 cm. The net result of these two opposing drivers is a global reduction of D99 by 5%, or ∼8 cm, representing a loss of ∼11,600 km3of rooted volume. Projected land cover scenarios in 2100 suggest additional future D99 shallowing of up to 30 cm, generating further losses of rooted volume of ∼43,500 km3, values exceeding root losses experienced to date and suggesting that the pace of root shallowing will quicken in the coming century. Losses of Earth's deepest roots—soil‐forming agents—suggest unanticipated changes in fluxes of water, solutes, and C. Two important messages emerge from our analyses: dynamic, human‐modified root distributions should be incorporated into earth systems models, and a significant gap in deep root research inhibits accurate projections of future root distributions and their biogeochemical consequences. 
    more » « less
  3. null (Ed.)
    Abstract Plant, soil, and aquatic microbiomes interact, but scientists often study them independently. Integrating knowledge across these traditionally separate subdisciplines will generate better understanding of microbial ecological properties. Interactions among plant, soil, and aquatic microbiomes, as well as anthropogenic factors, influence important ecosystem processes, including greenhouse gas fluxes, crop production, nonnative species control, and nutrient flux from terrestrial to aquatic habitats. Terrestrial microbiomes influence nutrient retention and particle movement, thereby influencing the composition and functioning of aquatic microbiomes, which, themselves, govern water quality, and the potential for harmful algal blooms. Understanding how microbiomes drive links among terrestrial (plant and soil) and aquatic habitats will inform management decisions influencing ecosystem services. In the present article, we synthesize knowledge of microbiomes from traditionally disparate fields and how they mediate connections across physically separated systems. We identify knowledge gaps currently limiting our abilities to actualize microbiome management approaches for addressing environmental problems and optimize ecosystem services. 
    more » « less